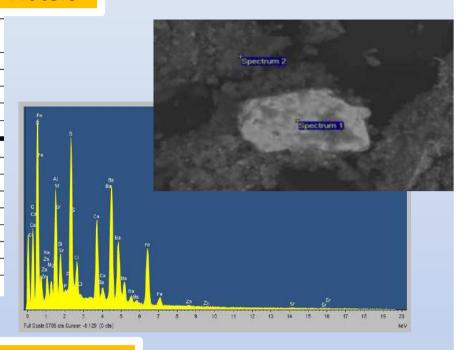
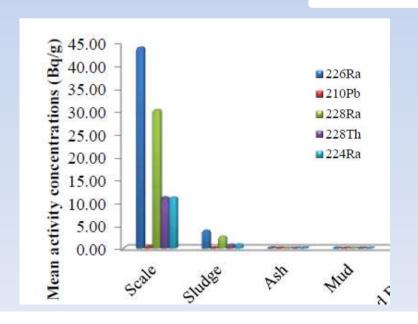
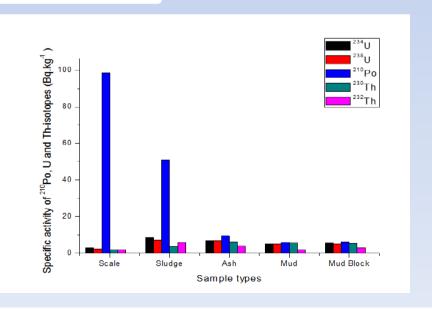
Assessment of NORM contaminated waste associated with oil and gas production from Ghanaian oilfields

D. Kpeglo^{1, 2, 3} J. Mantero^{1,4}, E. Darko^{2,3}, G. Reynolds^{2,3}, A. Faanu^{2,3}, G.Manjón¹, I. Vioque¹, E.H.K Akaho³, R. Garcia -Tenorio^{1,5,*}

¹Department of Applied Physics II., University of Seville, Seville, Spain ²Radiation Protection Institute, Ghana Atomic Energy Commission, Ghana ³Graduate School of Nuclear and Allied Sciences, University of Ghana,, Ghana ⁴Department of Radiation Physics, University of Gothenburg, Sweden ⁵Centro Nacional de Aceleradores (CNA), Seville, Spain






Produced Waters

Sample	Concentration Bq/l										
ID	²²⁶ Ra		228	Ra	²²⁸ Th	⁴⁰ K	²²⁴ Ra	²²⁴ Ra		²²⁸ Ra/ ²²⁶ Ra	
JF1			6.	6 ± 0.2	0.82 ± 0.01	6.3 ± 0.5		0.82 ± 0.01			
JF 2	7.6 ± 0.3 6		6.	9 ± 0.1	1.22 ± 0.03	8.3 ± 0.8	1.43 ± 0 .	04	0.91		
JF 3	6.2 ± Sample			Concentration mBq/l							
JF 4	6.6 ± ID		^{234}U	²³⁸ U	²¹⁰ Po	²³⁰ Th	232-	Γh			
JF 5	6.8 ± JF1		6.1 ± 2.1	5.5 ± 2.2	22 ± 2	6.4 ± 1.3	4 ± 1.3 2.1				
SF 6	20.1 ± JF 2			2.5 ± 0.5	2.3 ± 0.5	43 ± 4	4.6 ± 1.3	6 ± 1.3 1.7			
SF7	22.2 JF 3			1.6 ± 0.5	1.5 ± 0.5	39 ± 4	8.0 ± 1.2	1.6	± 0.5		
SF 8	19.5	IF 4		5.5 ± 2.3	5.0 ± 2.1	40 ± 3	6.8 ± 1.0	5.6 ± 1.2			
SF 9	22.1 JF 5		4.8 ± 1.7	4.3 ± 1.8	48 ± 5	5.6 ± 1.3	2.7	2.7 ± 0.5			
SF 10	19.7 SF 6			<dl< td=""><td>2.9 ± 0.5</td><td>82 ± 7</td><td>5.6 ± 0.8</td><td>4.2</td><td>± 0.7</td><td>l ——</td></dl<>	2.9 ± 0.5	82 ± 7	5.6 ± 0.8	4.2	± 0.7	l ——	
	22.2	SF 7		2.8 ± 0.5	4.2 ± 1.2	46 ± 3	4.7 ± 0.7	3.6	± 0.5]	
SF 11	22.3 =	SHX		2.5 ± 0.5	<dl< td=""><td>35± 11</td><td>2.9 ± 1.0</td><td>2.4</td><td>± 0.5</td><td>] ——</td></dl<>	35± 11	2.9 ± 1.0	2.4	± 0.5] ——	
SF 12	19.6 =	SF 9		2.1 ± 0.9	<dl< td=""><td>82 ± 12</td><td>8.0 ± 1.1</td><td>3.4</td><td>± 0.6</td><td>1 ——</td></dl<>	82 ± 12	8.0 ± 1.1	3.4	± 0.6	1 ——	
SF 13	18.7 =	SF 10)	3.2 ± 0.6	2.9 ± 0.4	135 ± 12	11.9 ± 1.8	2.1	± 0.5	1	
*JF-Jubilee Fiel		SF 11	l	<dl< td=""><td>2.7 ± 0.2</td><td>139 ± 9</td><td>12.0 ± 1.4</td><td>3.0</td><td colspan="2">± 0.9</td></dl<>	2.7 ± 0.2	139 ± 9	12.0 ± 1.4	3.0	± 0.9		
		SF 12	2	4.1 ± 0.6	3.8 ± 0.5	145 ± 14	15 ± 2.0	5.1	± 0.5		
	SF 13		2.5 ± 0.5	2.7 ± 0.2	55± 11	7.0 ± 1.5	3.4	± 1.7	1		

Scales, Sludges, muds,.....

